
MODELING GRIDDING ERROR ON LiDAR-DERIVED DIGITAL 
ELEVATION MODELS 

Fernando J. Aguilara, Jon P. Millsb, Jorge Delgadoc, Manuel A. Aguilara, 
Joao G. Negreirosd, José L. Pérezc, Emilio Matac 

a Department of Agricultural Engineering, Almería University  

Almería, Spain 

 faguilar@ual.es, maguilar@ual.es 
b School of Civil Engineering and Geosciences, Newcastle University 

 Newcastle upon Tyne, UK  

 j.p.mills@ncl.ac.uk 
c Department of Cartographic Engineering, Geodesy and Photogrammetry, Jaén University  

Jaén, Spain 

 jdelgado@ujaen.es, jlperez@uajen.es, emata@uajen.es 
d ISEGI, Universidade Nova de Lisboa  

Lisboa, Portugal 

 c8057@isegi.unl.pt 

 

Abstract:  

A hybrid theoretical-empirical model has been developed for modelling the error of 
LiDAR derived Digital Elevation Models (DEMs) under non-open terrain, especially 
designed to be applied in forestry applications. The theoretical component seeks to 
model the propagation of the Sample Data Error (SDE), i.e. error from LiDAR data capture 
of ground sampled points on open terrain, towards interpolated points. The interpolation 
methods used for infilling gaps may produce a non-negligible error that is referred to 
from here onwards as gridding error. In this case, interpolation is performed using an 
Inverse Distance Weighted (IDW) method with the local support of the five closest 
neighbours, although it would be possible to utilise other interpolation methods. The 
empirical component refers to what is known as “Information Loss”. That is the error due 
purely to modelling the continuous terrain surface from only a discrete number of points 
plus the error arising from the interpolation process. The SDE must be previously 
calculated from a suitable number of check points located in open terrain and supposing 
the LiDAR point density is sufficiently high to neglect the gridding error. For model 
calibration, 29 study sites, 200 x 200 m in size, were acquired by means of stereo-
photogrammetric methods belonging to different areas around Almeria province, south-
east Spain. The developed methodology was validated against two different LiDAR data 
sets. The first data set corresponds to an Ordnance Survey (OS) LiDAR survey carried 
out over a region of Bristol in the UK. The second data set corresponds to an area 
located at Gador mountain range, south of Almería province, Spain. Both terrain slope 
and sampling density were incorporated in the empirical component through the 
calibration phase, resulting in a very good agreement between predicted and observed 
data (R2 = 0.9856; p<0.001). Regarding the validation results, the Bristol observed 
vertical errors, corresponding to a different LiDAR point density, offered a reasonably 
good fit to predicted errors. Similarly promising results were achieved in the more 
rugged morphology of the Gador mountain range data set. Despite the fact that results to 
date should be regarded as preliminary, the findings presented in this paper could be 
used as a guide for the selection of appropriate operational parameters (essentially point 
density in order to optimize survey cost), in projects related to LiDAR survey in non-open 
terrain, for instance those projects dealing with forestry applications. 
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1. INTRODUCTION 

Accurate and high spatial resolution Digital 
Elevation Models (DEMs) from airborne LiDAR 
data are in increasing demand for a growing 
number of mapping and GIS tasks related to 
applications such as forest management, 
urban planning, bird population modeling, ice 
sheet mapping, flood control, road design, etc. 
[1]. However, many end users of DEMs are 
unaware of the issues surrounding the quality 
of the underlying height data and their 
influence in derived calculations such as slope 
and aspect [2]. 

 In fact, many variables are known to 
contribute to the accuracy of LiDAR-derived 
DEMs. Among them, LiDAR sampling density 
is considered to be a significant contributor to 
the vertical error [3], although terrain 
morphology and land cover (filtering 
performance to transform a Digital Surface 
Model (DSM) to a bare-earth Digital Terrain 
Model (DTM)) have to be quoted as other 
important factors influencing the final DEM 
accuracy. But unlike the last two variables, 
sampling density (or post-spacing) represents 
a significant portion of overall survey costs [4] 
that, furthermore, can be selected as an 
operational parameter of the project. 

Although there have been a number of studies 
dealing with LiDAR-derived DEM error, most 
can be classified as empirical work in which 
the influence of different variables on DEM 
error was analysed ([5], [6], [7]). In this way, a 
hybrid theoretical-empirical model has been 
developed for modeling the error of LiDAR-
derived DEMs under non-open terrain, 
especially designed to be applied in forestry 
applications where the laser beam penetration 
through canopy can be limited and so the 
ground sampling density reduced (Figure 1). 
There is a frequent need to densify the initial 
LiDAR point cloud (last pulse) when the 
surveyed area presents dense vegetation [1] 
and new ground points have to be interpolated 
to infill gaps and construct accurate DTMs and 
Canopy Height Models (CHMs). But the 
interpolation methods used for infilling gaps 
may produce a non-negligible error that is 
referred to from here onwards as gridding error 
[2]. That is the propagation of the Sample Data 
Error (SDE) towards interpolated points. 
Obviously, gridding error depends on, among 
other variables, the interpolation method 
employed ([8], [9]). 

Therefore the goal of this research is to 
establish a relationship between LiDAR 
sampling density, terrain morphology, 
interpolation method and DEM accuracy. 

2. MODEL DEVELOPMENT 

The full model developed in this work can be 
expressed as the sum of three components: 

(1)         2
filtering

222 σσσσ ++= griddingSDEtotal  

Where σ2
total is the total vertical error estimated 

by the model, σ2
SDE is the sample data error, 

i.e. error from LiDAR data capture of ground 
sampled points on open terrain, σ2

gridding is the 
aforementioned gridding error, and σ2

filtering is 
the error due to filter non-terrain objects 
(buildings, vegetation, etc.) to obtain the final 
bare-earth DTM. All the terms are expressed 
as error variances. Equation 1 is based on 
general error-propagation theory, assuming 
that the sources of error are independent or 
uncorrelated and, likewise, that the errors are 
randomly distributed. 

Regarding Figure 1, filtering error can be 
neglected in open terrain because of the 
absence of non-terrain objects. Equally, 
gridding error can also be excluded in open 
terrain because of the high point density 
usually offered by LiDAR technology. Hence 
the SDE could be previously calculated from a 
suitable number of check points located in 
open terrain [10]. Notice that filtering error, 
non-negligible over non-open terrain, is very 
cumbersome to model because it depends on 
the algorithm used to filter the LiDAR data, the 
type and density of vegetation, terrain 
complexity and so on. Hence it may be 
recommended to take it into account by adding 
the expected filtering error to the SDE in 
equation 1 as a specific sample data error for 
every type of land cover distinguished over the 
entire working area. Hence equation 1 can 
then be rearranged as:  

(2)                        222
griddingSDEtotal σσσ +=  

So the remaining question is how to model 
gridding error. A hybrid theoretical-empirical 
approach has been proposed in this work. The 
theoretical component seeks to model the 
propagation of the sample data error obtained 
for every land cover towards interpolated 
points. In this case, interpolation is performed 
using the Inverse Distance Weighted (IDW) 
method using a power of two and with the local 
support of the five closest neighbours, 
although it would be possible to utilise other 
interpolation methods. 

A brief explanation of the deduced equation is 
presented through equations 3 to 6 for the 
particular case of three closest neighbours. 

 



2222
filteringgriddingSDEtotal σσσσ ++=

222
griddingSDEtotal σσσ += Non-open terrain

Open terrain

 
Fig. 1. Schematic illustration depicting the 

fundamental concepts for the model development. 

 

The variance of Z0 (interpolated point) and Zi 
(three sample points in this case) can be 
estimated using general error propagation 
theory, supposing the heights Z as a random 
variable second-order stationary. If the 
interpolation weights for every point take the 
values a, b and c respectively, it can be 
written: 
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That is to say: 

( )
( ) (5)             
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cba

surface ++
++

= σσ  

A Monte Carlo numerical simulation has been 
conducted to resolve the last equation, 
randomly varying the values of the 
interpolation weights and the number of 
closest neighbours over 5000 runs. The results 
have presented a very good agreement (R2 = 
0.9972) to a potential expression given by: 

(6)            03181 2864602
surfacegridding M σσ .. −=  

Where M is the number of closest neighbours 
employed for the IDW interpolation process 
and σsurface is the surface error, given by the 
sum of two components: 

(7)              2
IL

22 σσσ += SDEsurface  

Being σIL the empirical component of the 
model which refers to what is known as 
“Information Loss”. This is the error due purely 
to modelling the continuous terrain surface 

from only a discrete number of points. Then 
the final model formulation is given by: 

(8)   03181 22864602 )(. .
ILSDEgridding M σσσ += −  

Where σgridding is the gridding error across the 
whole surface and σIL is the information loss. 
Information loss was empirically modelled by 
means of a calibration process described 
subsequently, which yielded the following 
expression: 

(8)      N2758470 -0.499879730702 .. SlopeIL =σ  

Where Slope is the average terrain slope 
(dimensionless expression) and N is the 
LiDAR ground resolution (points/m2). Therefore 
the empirical component regarding information 
loss embraces two variables directly implied in 
the final gridding error: terrain complexity and 
original sampling density. 

Referring back to equation 2, the final model 
formulation can now be written as: 

(9)  )03181 2
SDE

2
IL

2864602 σσσσ ++= −
SDEtotal M (. .  

3. STUDY SITES AND DATA 
SETS 

3.1. Data sets used for model calibration 

For model calibration 29 study sites, 200 x 200 
m in size, belonging to different areas around 
Almeria province, south-east Spain, were 
acquired by means of stereo-photogrammetric 
methods. The range of slopes and 
geomorphologic conditions of those 29 study 
sites can be considered as very diverse (from 
3% up to 82% average slope) and so they 
represented an excellent data source for 
calibrating the empirical component of the 
model. 

The DEM of each topographic surface was 
obtained automatically by stereo-image 
matching and subsequent manual editing. In 
this way seven DEMs with a grid spacing of 2 
m were obtained. The grid points were on UTM 
map projection (zone 30 North; European 
Datum 1950) and elevation data were stored 
as orthometric heights. 

The different sampling densities used to 
calibrate the empirical component of the model 
were extracted from each original grid DEM by 
stratified random sampling (four by four 
sampling quadrants), that guaranteed a 
homogenous distribution of the sampled data 
over the whole working area. Each sampling 
density tested was composed of four replicates 
randomly extracted and ranged from 0.25 



point/m2 (2 m average grid spacing) to 0.0008 
points/m2 (35 m average grid spacing). 
Residuals, or differences between original and 
interpolated DEM, were computed by the true 
validation method over a sample of 169 check 
points previously extracted by random 
sampling from the original data sets. The 
information loss, that is the response or 
dependent variable in regression analysis for 
calibrating the empirical component, was 
hence computed as the standard deviation of 
those residuals. 

3.2. Data sets used for model validation 

The developed methodology was validated 
against two different LiDAR data sets. 

The first data set corresponds to an Ordnance 
Survey (OS) LiDAR survey carried out over a 
region of Bristol in the UK. 

Data were captured in August 2006 with a 
Riegl Q560 sensor presenting an original 
ground spacing of between 0.5 to 1 points/m2 
over flat to hilly terrain (approximately 11% 
average slope). Furthermore, a set of 49 
ground check points, natural features 
distributed throughout the study area (Figure 2 
and Figure 3), were surveyed by OS using 
differential GPS methods, enabling the 
assessment of the LiDAR survey vertical 
accuracy. Different LiDAR point densities were 
acquired from the original LiDAR data by a 
thinning or decimation process carried out with 
Terrascan™ software using the central point 
algorithm. This yielded several average grid 
spaced DEMs of 4.4 m, 5.3 m, 7 m, 8.4 m, 
11.1 m, 13.2 m, 16.9 m and 23.5 m. 

 

 
Fig. 2. Aerial view corresponding to the validation 
area of Bristol, UK, depicting the GPS check point 

distribution. Reproduced with the permission of 
Ordnance Survey. 

 

 
Fig. 3. Ground check point location in the Bristol 

area (marked cross in the picture). Reproduced with 
the permission of Ordnance Survey. 

 

The second data set corresponds to an area 
located at Gador mountain range, south of 
Almeria province, Spain. LiDAR data was 
collected in a survey carried out in September 
2007 using a Leica ALS50-II scanning system 
with a flight altitude of 1500 m, providing an 
approximate resolution of around 
0.5 points/m2. In this case a high resolution 
image data set (0.2 m ground pixel size) was 
also obtained with a digital camera, an 
Intergraph DMC (RGB plus IR). 

Last return raw data were filtered to segment 
the ground surface from vegetation, buildings 
and any gross errors embedded in the general 
point cloud. The filtering algorithm developed 
by Axelsson [11] and implemented in 
Terrascan™ software was used to segment 
ground points by means of a progressive TIN 
densification method where the surface was 
allowed to fluctuate within certain values. The 
digital imagery was utilised to help filter non-
terrain objects and bare earth terrain. 

A number of 15 squared subsets, 286 x 286 m 
in size (approximately 1.44 m grid spacing), 
were extracted from the Gador data set 
presenting a range of average slope between 
20% and 61%. Eight LiDAR sampling densities 
were generated from every one of the original 
subsets by means of a stratified random 
sampling. Each sampling density counted on 
four randomly extracted replicates to 
incorporate sample point variability, obtaining 
LiDAR ground resolutions ranging from 0.23 
points/m2 to 0.0008 points/m2. Again residuals 
were computed by the true validation method 
over a sample of 150 check points previously 
extracted by random sampling from the original 
subsets. 



4. RESULTS AND DISCUSSION 

4.1. Model calibration 

The empirical component of the model, or 
information loss in equation 8, showed a good 
fit to the experimental data, with a R2 
regression coefficient of 0.9856 (p<0.001) 
(Figure 4). It must be highlighted that the 
standard deviation (Sd) observed and 
predicted in Figure 4 refers to the term σIL in 
equation 8 (information loss). Summing up, the 
DEM information loss grows almost linearly 
with increasing slope (rugged terrain) and 
presents a non-linear inverse relationship 
regarding LiDAR ground sampling density. 
That non-linear relationship allows pointing out 
that a decrease in LiDAR ground resolution 
only provokes a significant increase of DEM 
error when we are situated within the bounds 
corresponding to low LiDAR post-spacing 
values. Furthermore the break-point location 
(LiDAR ground sampling density above which 
practically no gridding error is propagated to 
the interpolated DEM) can vary depending on 
the average terrain slope.  
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Fig. 4. Results corresponding to the calibration 

phase of the empirical component “information loss” 
(see equation 8). R2 = 0.9856 (p<0.001). 

 

Figure 5 shows graphically the aforementioned 
behaviour for different type of terrain slopes 
(from 20% up to 100%) according to equation 
9. The interpolation method employed was 
IDW with the local support of the five closest 
neighbours. It is worth noting that the total 
error in LiDAR-derived DEMs turns out not to 
be very sensitive to change in LiDAR nominal 
post-spacing when the surveyed area presents 
low average slope. Nevertheless, the influence 
of LiDAR resolution becomes relevant when 
terrain complexity increases, and it is therefore 
recommended to increase LiDAR point density 
in order to reduce the final total error. 

This finding could be deemed as a plausible 
explanation to the experimental results 
recently published in [4], where they describe 

an intriguing absence of a significant pattern 
relating error in DEM accuracy and different 
LiDAR post-spacing. The likely explanation is 
that the terrain where they developed the 
research presented an average slope ranging 
between 2% and 5%, a much too low slope to 
detect significant effects on DEM accuracy due 
to LiDAR point density variation. 
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Fig. 5. Graphical representation of the behaviour of 
the proposed model for SDE = 0.15 m. 

 

4.2. Model validation 

The full model developed and calibrated 
throughout the last sections was validated over 
the data sets described in Section 3. 

Validation over the Bristol data set provided 
the results depicted in Figure 6. The sample 
data error (SDE) computed in the Bristol area 
was 0.124 m and the average slope 
throughout the whole area was approximately 
11%. Starting from the eight previously 
extracted LiDAR samplings, the interpolation 
by means of IDW method (five closest 
neighbours) allowed eight dense DEMs to be 
obtained (0.5 points/m2) and their accuracy 
assessed by means of the GPS check points 
(observed error). 

As can be seen in Figure 6, the results offered 
by the developed model fit reasonably well to 
the observed errors, reproducing quite 
accurately the experimental relationship 
plotted against total error and LiDAR point 
density. 

Regarding the validation carried out over the 
Gador data set, it should be underlined that it 
was only applied to the empirical term 
determining the so-called information loss, 
because of the lack of an appropriate set of 
highly accurate GPS check points when 
computing the total error. The results are 
presented in Figure 7, showing a good 
agreement between predicted and observed 
errors (R2 = 0.9272). Given the exhaustive 



number of subsets tested and the careful 
methods used to filter the LiDAR raw data, 
these results may be deemed as highly 
significant to validate the empirical component. 
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Fig. 6. Validation results corresponding to the Bristol 
data set. Sd is the standard deviation of residuals at 

GPS check points for every LiDAR point density 
tested. 
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Fig. 7. Validation results corresponding to the Gador 

data set. Error computed for 15 subsets, eight 
LiDAR sampling densities and four replicates for 

every one. 

 

5. CONCLUSIONS 

Very little work has been done to determine 
the minimum data requirements for specific 
applications of DEMs, although there is an 
increasing tendency to collect larger volumes 
of elevation data. In the majority of cases it is 
preferable to have an optimised DEM adapted 
to user needs rather than to have a vast 
amount of data, which will be more difficult to 
handle. In the particular case of LiDAR data, it 
must be emphasized that higher LiDAR 
resolutions generally require an increment in 
the overall survey costs (e.g. sensor with a 
higher pulse rate, lower altitude over-flight, 
narrower scan angle, and so more flight-lines 
to cover the same area). 

In this sense, we have developed a hybrid 
theoretical-empirical model for modelling the 
error of LiDAR-derived Digital Elevation 
Models (DEM) under non-open terrain. Both 
terrain slope and sampling density were 
incorporated in the empirical component 
through the calibration phase, resulting in a 
very good agreement between predicted and 
observed data (R2 = 0.9856; p < 0.001). 
Regarding the validation results, the Bristol 
observed vertical errors, corresponding to 
different LiDAR point densities, offered a 
reasonably good fit to predicted errors. 
Similarly promising results were achieved in 
the more rugged morphology of the Gador 
mountain range data set. 

Despite the fact that results to date should be 
regarded as preliminary, the findings 
presented in this paper could be used as a 
guide for the selection of appropriate 
operational parameters (essentially point 
density in order to optimize survey costs as a 
function of terrain complexity), in projects 
related to LiDAR survey in non-open terrain, 
for instance those projects dealing with forestry 
applications. 
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