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1. Introduction 

According to Rogerson and Fotheringham (1994), there is an increased demand for systems 
that do more than display and organize data. The set of potential applications for spatial analysis 
is enormous, for example, accident patterns, victim profiles within a residential population and 
spread rates for pollution levels. Techniques are needed to let spatial data speak for themselves 
(Griffith and Layne, 1999). Thus, spatial statistics must hold a specific spatial framework to 
apply quantitative and statistical methods for a better understanding of spatial relationships. 

If the finding of spatial structures is fundamental then spatial autocorrelation, spatial 
interpolation and spatial autoregressive models are the three major spatial methods that fulfill 
this constraint. Although these fields have been developed autonomously, this short-paper tries 
to review a particular pattern that underlies these three concepts: the spatial interpolation 
subject. In short, this involves the estimation of missing geo-referenced data when undertaking 
spatial autoregression and Kriging. However, spatial autocorrelation can also be exploited for 
spatial prediction purposes such as patterns and outliers. Spatial autocorrelation measures can 
also indicate if there is an equally likely chance of predicting neighboring values while the 
degree of redundancy indicates how much information is free to vary. As expected, certain 
topics emerge from these concepts such as the dependence of the Ordinary Kriging (OK) 
variance solely on geometry, the weight matrix codification of autoregressive approaches, the 
need of heavy spatial analysis computation, the non-standardization possibility of observation 



distribution or the impact of sampling approaches. However, these last questions will not be 
covered here. 
 
2. Kriging, Autocorrelation and Autoregression 

The word Kriging is synonymous with the optimal prediction of unknown values from 
observed data at known locations (Auñón and Gómez-Hernández, 2000). After the variogram 
has been defined, the algebraic relationship between values at individual distances including 
clustering and direction is used to estimate Kriging weights. Mostly, four factors are taken into 
account in assigning weights: A) Closeness to the location being estimated; B) Redundancy 
between data values; C) Anisotropic continuity; D) Magnitude of continuity. Kriging is BLUP 
(best linear unbiased predictor) whether or not data are normally distributed. It is linear since 
estimations are weighted linear combinations of the available data. It is unbiased because the 
error mean is zero (no over- or under-estimates). It is best since its goal is to minimize error 
variance. Conceptually, the variogram curve has minimal error variance at any known data 
location (it is zero but if and only if there is no measurement error) and maximum value at some 
specified range away from that point. As expected, the predictable maximum error Kriging 
deviation occurs in areas where there are no points. 

Spatial autocorrelation can be interpreted as a descriptive index, measuring aspects of the 
way things are distributed in space (clustering) but, at the same time, it can be seen as a casual 
process measuring the degree of influence exerted by something over its neighbors (correlation) 
Goodchild (1986). This happens because the role of location holds two major implications for 
the way statistical analysis should be carried out. Location leads to spatial dependence 
(correlation or variation that each neighbor holds in relation to a particular point) and spatial 
heterogeneity (clustering, concentration or proportion of neighborhood average in relation to a 
specific point) established by Tobler’s First Law of Geography. Since regional differentiation 
respects the intrinsic uniqueness of each location, spatial autocorrelation can be viewed, hence, 
as a map pattern descriptor. 

Autoregressive models (AR, CAR and SAR) expand the standard linear model regression 
with an additional term that accounts for patterns that are not predicted by local variables but are 
instead related to the residual of the neighbour locations. In the AR model, for instance, the 
autoregressive term is independent of the environmental predictors and is appropriately applied 
when correlations result from endogenous population processes that are unrelated to 
environmental conditions. One live example of this approach is given by Lee (2005) concerning 
the analysis of a watershed (the water quality effects of point and non-point pollution sources) 
in the Neuse River Basin, NC. It is based on the hypothesis that the spatially weighted sum of 
water quality in neighboring stations affects the water quality of each monitoring station 
(indirect effect), as do the standard explanatory variables of pollution sources (direct effects). 
The reaction function is in the form of a spatial AR model: y = ρWy + X1β1 + X2β2 + ε, where 
y represents the water quality indicator vector, W is a weight matrix, X1 is the matrix of 
pollution sources, X2 is the matrix of land cover and stream characteristics, ρ is a spatial 
autocorrelation parameter, and ε is a random error vector. The model specifies that the spatially 
weighted sum of neighbor water qualities affects the nutrient level of each downstream 
monitoring unit, as do the general covariates of pollution sources and heterogeneous 
characteristics in each geographical unit. It eventually states that the realization of y at 
hydrologic unit i is a function of its realization of X at i, plus realization of y at hydrologic unit 
j, plus an error. According to Lee (2005), this AR model type is useful for explaining the 



phenomena in a watershed because it allows observing the distinct spatial externality of 
spillover effects. 
 
3. Discussion 

The threat of spatial autocorrelation and statistical heterogeneity hold the ability to compare 
two regions and to characterize texture differences. Quite often, distance location pairs are less 
similar (competitive spatial processes) than closer ones (cooperative spatial processes). As a 
consequence, indices of spatial autocorrelation calculated globally and locally are valuable for 
descriptive purposes because they provide a measure of how similar objects are to their spatial 
neighbors. This spatial dependence impact is also crucial for Kriging. 

However, it is the notion that variation is spatially autocorrelated in some predictable 
fashion that creates a fundamental conflict between the goals of classical statistics and its 
assumptions because classical estimators tend to be inconsistent as the degree of spatial 
dependence increases (either positive or negative). This may come as a surprise to ecologists 
and geographers who have been trained in the belief that Mother Nature follows the 
assumptions of classical statistics (Levine, 1997). 

The spatial autoregression plus spatial autocorrelation provides another linkage with 
Kriging: the spatial interpolation subject. This means that the estimation of absent spatial data 
can be undertake by spatial autoregressive methods, Kriging and autocorrelation measures. For 
instance, a high degree of spatial autocorrelation suggests an equally likely chance of predicting 
neighboring values. On the contrary, a low value reveals a low level of spatial data redundancy 
(Griffith and Layne, 1999). Thus, several relationships among these three concepts emerge: 

• Spatial autocorrelation is the required condition of Kriging and autoregression models. In 
fact, spatial autocorrelation is a physical reality and is a necessity for interpolating nearby 
values. 

• Spatial autocorrelation seeks spatial identification report while spatial regression and 
Kriging seeks spatial prediction. 

• The variance-covariance matrix is included within spatial regression and Kriging (Griffith 
and Layne, 1999). 

• Once a variogram is computed, Kriging can be used for spatial interpolation. 
• With spatial regression models, spatial interpolation can be regarded as an interactive re-

estimation solution fashioned with updated variable imputations based on R2 and IC 
decision parameters in Maximum Likelihood, Ordinary Least Squares and bootstrap 
procedures (Griffith and Layne, 1999). According to these authors, incorporating spatial 
autocorrelation results in a 5-10% improvement in the statistical description for a given 
georeferenced dataset. 

• Kriging is primarily applied with continuous regions while spatial autoregression 
involves aggregations of phenomena into discrete regions such as ward units (Griffith and 
Layne, 1999). 

• Spatial autoregressive methods assume that spatial interpolation follow an underlying 
trend plus random residuals. However, Kriging can presume two views: A) If Universal 
Kriging is assumed then spatial interpolation is interrelated with a background trend; B) 
If Ordinary Kriging is chosen then spatial interpolation is consistent with the samples 
global average plus random residuals. 

• Since Kriging is an exact spatial interpolator (if no samples measurement error is 
applied), autoregressive residuals can be used for a reasonable reality approximation test. 



The chance to verify existing patterns among residuals provides a key information source 
on possible assumption violations, variable transformations, outliers, trends surface and 
inappropriate formulations for raw data (Clark and Hosking, 1986). 

The computational burden underling a number of those approaches is a challenging 
problem, particularly with very large spatial-temporal datasets. For example, spatial 
interpolation simulations in earth sciences typically require huge models with millions of cells. 
One way to overcome this problem is the brute-force of parallel computers, as recently proposed 
by Vargas et al. (2006). 
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ABSTRACT 
Conventional statistical models must be reformulated to properly account for spatial correlation and 

spatial heterogeneity within georeferenced data. For instance, if the autoregressive residuals reveal a 

medium-strong spatial autocorrelation then any missing variable within the initial regression model 

can be significant. In emphasizing classical statistical assumptions about spatial data, four major 

problems emerge. I) Non-Gaussian distribution of spatial variables (trend removal and Box-Cox 

power transformations are the corrective actions before OK, SK and UK can be applied). II)  

Correlated random error with non-zero mean and non-Normal distribution (a low probability of the 

Kiefer-Salmon asymptotic regression indicates a rejection of the null hypothesis of Gaussian error). 

III)  Non-homoscedasticity of error distribution (it is easier to handle nonstationary time series with 

changing means than nonstationary time series with changing variances). IV)  Non-multicolinearity 

leads to a larger estimated variance of the regression coefficients (the combination of a high R2 with 

a very low t statistic is often a good indicator that something is wrong in terms of colinearity. 

It is also important to stress the heavy computation issue concerning these three approaches. One 

way to overcome the mathematical design that underlies them is the brute-force of parallel 

computers, particularly with very large spatial-temporal datasets. 

 


